# **Project Documentation Gebäude-Dokumentation**

Abstract | Zusammenfassung







Photos: Chuck Baker Photography

## 206 E 20th St, NY NY 10003

## Data of building | Gebäudedaten

| Year of construction<br>Baujahr                            | 2013-2017  |                                                                  |           |  |
|------------------------------------------------------------|------------|------------------------------------------------------------------|-----------|--|
| U-value exterior                                           | 0,15 (0,5) | Space heating                                                    | 21        |  |
| (interior) insulation<br>external wall<br>U-Wert Außenwand | W/(m²K)    | Heizwarmebedari                                                  | kWh/(m²a) |  |
| U-value insulation                                         | 0,20       | Primary Energy Renewable (PER)                                   | N.A.      |  |
| interior underground<br>U-Wert Kellerdecke                 | W/(m²K)    | Erneuerbare Primärenergie (PER)                                  | kWh/(m²a) |  |
| U-value roof                                               | 0,131      | Generation of renewable Energy                                   | N.A.      |  |
| U-Wert Dach                                                | W/(m²K)    | Erzeugung erneuerb. Energie                                      | kWh/(m²a) |  |
| U-value window                                             | 0,79       | Primary Energy (PE)                                              | 122.59    |  |
| U-Wert Fenster                                             | W/(m²K)    | Primärenergie (PE)                                               | kWh/(m²a) |  |
| Heat recovery<br>Wärmerückgewinnung                        | 85 %       | Pressurization test n <sub>50</sub><br>Drucktest n <sub>50</sub> | 1,0 h⁻¹   |  |
| Special features<br>Besonderheiten                         |            |                                                                  |           |  |

### EnerPHit Retrofit: NYC urban infill residential retrofit and extension

A mosaic of different building assemblies (poured-in-place concrete, concrete masonry units, structural steel, light gauge metal, timber frame, rain screen and solid masonry) was used for structural remediation, to maximize performance and enlarge the existing building horizontally and vertically while maintaining a strong relationship with the front façade of the neighboring sister building. The addition includes balconies and terraces which provide access to the outdoors from almost every room.

This project was certified by the Passive House Academy (PHA).

### Responsible project participants Verantwortliche Projektbeteiligte

| •                                                          |                                                                                        |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Architect<br>Entwurfsverfasser                             | In Cho (ChoShields Studio)<br>http://www.choshields.com                                |
| Implementation planning<br>Ausführungsplanung              |                                                                                        |
| Building systems<br>Haustechnik                            | Baukraft Engineering                                                                   |
| Structural engineering<br>Baustatik                        | Becker Engineering                                                                     |
| Building physics<br>Bauphysik                              | Diesel Contracting of NY                                                               |
| Passive House project planning<br>Passivhaus-Projektierung | PH Consultant: In Cho (ChoShields Studio); PH<br>Certifier:Passive House Academy (PHA) |
| Construction management<br>Bauleitung                      | -                                                                                      |
| Certifying body<br>Zertifizierungsstelle                   |                                                                                        |
| Passivhaus Institut Darmstadt<br>www.passiv.de             |                                                                                        |
| Certification ID<br>Zertifizierungs ID                     |                                                                                        |
|                                                            | Project-ID (https://passivehouse-                                                      |

| 5595 | Project-ID (https://passivehouse-<br>database.org/index.php?lang=en#d_5595)<br>Projekt-ID (https://passivehouse-<br>database.org/index.php?lang=de#d_5595) |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Author of project documentation Verfasser der Gebäude-Dokumentation

In Cho, R.A., ChoShields Studio

Date Datum Signature Unterschrift

REDAR

NE

20.09.2019

Page | Seite

## 1. Ansichtsfotos



Südt



Nord

## 2. Innenfoto exemplarisch



### 3. Schnittzeichnung



© ChoShields Studio

## 4. Grundrisse



**OChoShields Studio** 

#### 5. Construction of Floor Slab



A continuous 3" layer of R5/inch XPS was installed over the new slab throughout the cellar with an additional layer of insulation under the slab where grade beams were not required to reinforce the existing cellar walls. The existing stone walls were air-sealed with Sto Emerald Coat, and taped (with ProClima Vana) to the vapor barrier for continuous airsealing.



Wall to slab detail

Enlarged slab detail

EnerPHit planning:

#### U-VALUES OF BUILDING ELEMENTS



### 6. Construction of Wall: Assembly no. 8, Metal Stud Wall



The vertical extension of the party wall required a 2-hour fire-rating. The structural wall consists of light metal stud walls gauge encapsulated in gypsum sheathing (cavities filled with mineral wool). 4" continuous exterior insulation is attached using Fiberglas clips, which also support a rain screen. Additional mineral wool insulation was provided in the 11/2" service cavity at all exterior exposed walls. We submitted the thermal performance of this assembly in PSI Therm 3D as part of our certification.







PSI Therm modeling: Passive House Academy

#### 6. Construction of Wall: Assembly no. 1, Timber Wall



**PSI** Therm modeling: **Passive House Academy** 

wall

walls

is

Wall to ceiling /roof connection The air-sealing (shown green) is continuous from the structural wall wall, around the steel joist, and to the underside of the plywood, which was then air-sealed from above.

<mark>╄┿╋<mark>╢┶┰┙┎┶┰┶</mark>╣┿┿┥║┿╋╣</mark>

爴



### 6. Construction of Wall: Assembly no. 2, Front Cellar Wall

ChoShields Studio



Interior insulation was added to the existing front cellar wall. Insulation was installed continuously and between wood battens which support the finished wall.





### 6. Construction of Wall, Assembly no. 3, Timber Wall Extra Insulation



PSI Therm modeling:

This wall assembly is the same as assembly no 1, the timber frame wall, except that since the juncture between the existing masonry and the new vertical extension occurred approximately 4' above the finish floor, there was room to add extra insulation on the interior of the upper part of the wall. We submitted the thermal performance of this assembly PSI Therm in as part of our certification.



Photo left: step 1 flush air-sealed wall at transition between existing brick and new timber constuction. Photo right: step 2 interior (service) cavities upper part of 3rd floor wall- later filled with mineral wool insulation



#### 6. Construction of Wall, Assembly no. 4, Front Brick Extra Insulation

ChoShields Studio



Photos: 2nd floor front facade



On the front facade, we have used wood furring adjacent to the finish wall and filled the areas within and behind the furring with mineral wool insulation. This assembly has shallower existing brick which allows deeper insulation.





#### 6. Construction of Wall, Assembly no. 5, Metal Beam in Timber Frame



| <br>B'T GYPSUM WALL BOARD                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|
| 1 $\frac{1}{2}$ " T SERVICE CAVITY: MINERWOOL INSULATION, 1 $\frac{1}{2}$ " X 2 $\frac{1}{2}$ " SOFTWOOD BATTENS AT 24" O.C. |
| INTERIOR AIR—SEALING: STO<br>EMERALD COAT                                                                                    |
| 10"T MINERAL WOOL INSULATION                                                                                                 |
| STEEL BEAM                                                                                                                   |
| <br>EXTERIOR SHEATHING: 🖁 T<br>GLASS MAT SHEATHING                                                                           |
| <br>EXTERIOR AIR/WEATHER<br>SEALING: STO EMERALD COAT                                                                        |

4"T MINERAL WOOL INSULATION

All cavities in the rear addition steel moment frame were filled with mineral wool insulation. The wall was insulated on the interior with a  $1\frac{1}{2}$ " service cavity and on the exterior with 4" continuous mineral wool.



Photo left: wood framing for insulation of structural steel. Photo right: wall left open to show the cavities filled with mineral wool insulation.



#### 6. Construction of Wall, Assembly no. 6, Front Existing Brick Wall

On the front facade, we have used wood furring adjacent to the finish wall and filled the areas within and behind the furring with mineral wool insulation.



§"T GYPSUM WALL BOARD

 $1\frac{1}{2}$ " T SERVICE CAVITY: MINERWOOL INSULATION,  $1\frac{1}{2}$ " X  $2\frac{1}{2}$ " SOFTWOOD BATTENS AT 24" O.C.

- 3.5"T MINERAL WOOL INSULATION
- STO EMERALD COAT
- 1"T PARGING
- 11%"T EX BRICK WALL



### 6. Construction of Wall, Assembly No. 9, Party Wall



§"T GYPSUM WALL BOARD

 $1\frac{1}{2}$ " T SERVICE CAVITY: MINERWOOL INSULATION,  $1\frac{1}{2}$ " X  $2\frac{1}{2}$ " SOFTWOOD BATTENS AT 24" O.C.

4"T C.M.U.

- STO EMERALD COAT
- 78"T EX BRICK WALL

On the existing brick party walls, we added an additional wythe of 4" CMU block as part of the structural remediation. Although these walls were adjacent to another building, we insulated all 1 1/2" service cavities 3' in from exterior exposed walls.



Photo right: 2nd floor party wall insulation and wood battens extend inside 3' min. from exterior exposed front wall. The party wall is adjacent to the neighbor's conditioned space.

|   | Assembly no.   | Building assembly     | description       |                                                                |                     |                   |                 | Interior insulation |
|---|----------------|-----------------------|-------------------|----------------------------------------------------------------|---------------------|-------------------|-----------------|---------------------|
|   | 9              | Party Wall            |                   |                                                                |                     |                   |                 | yes                 |
|   | ,              | Heat transfer resista | ince (m²ዞ/W)<br>e | nterior R <sub>a</sub> : 0.13<br>sterior R <sub>a</sub> : 0.13 |                     |                   |                 |                     |
|   | Area section 1 |                       | 2. [W/(mK)]       | Area section 2 (optional)                                      | λ [W/(mK)] Area sec | tion 3 ioptional) | λ [W/(mK)]      | Thickness [mm]      |
| ĺ | Gypsum bo      | ard                   | 0.250             |                                                                |                     |                   |                 | 16                  |
|   | Fiberglas      | s.5                   | 0.036             | battens                                                        | 0.130               |                   |                 | 38                  |
| I | CMU            |                       | 2.100             |                                                                |                     |                   |                 | 102                 |
| I | Exist Bri      | ick                   | 1.200             |                                                                |                     |                   |                 | 194                 |
| ļ |                |                       |                   |                                                                |                     |                   |                 |                     |
|   |                |                       |                   |                                                                |                     |                   |                 |                     |
| ĺ |                |                       |                   |                                                                |                     |                   |                 |                     |
| Į |                |                       |                   |                                                                |                     |                   |                 |                     |
|   |                | Per                   | centage of sec. 1 | Per                                                            | centage of sec. 2   | Ferca             | ntage of sec. 3 | Total               |
|   |                |                       | 100%              |                                                                |                     |                   |                 | 34.9                |
|   |                | U-value supplem       | ent               | W/(m²K)                                                        | U-Value             | 0.629             | W/(m²K)         |                     |

### 7. Construction of Roof, Assembly No. 7





### 8. Window and Window Installation



## TYP HEAD AND SILL DETAIL

| 8                      |                                                                                                                  | Window Installation                                                                                                     |
|------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| HIL OPEN SPACE         | Description of the<br>window (frame)<br>construction,<br>manufacturer<br>Make window<br>(frame; product<br>name) | Munster Joinery, Eco Clad + Future<br>Proof fixed and sash<br>U <sub>w</sub> -value = 0.79 W/(m <sup>2</sup> K) Average |
| in THE AT MALE         | Frame U-value Uf                                                                                                 | EcoClad: 0,72 W/(m <sup>2</sup> K), Future Proof: 0,66 W/(m <sup>2</sup> K)                                             |
| зиости техние там Анде | Type of glazing                                                                                                  | St Gobain 52mm triple glazing VT<br>71%;                                                                                |
|                        | Glass U-value Ug                                                                                                 | 0,60 W/(m <sup>2</sup> K)                                                                                               |
| 6 1/2" TYP             | g-value of the<br>glazing                                                                                        | 0,61                                                                                                                    |

**TYP JAMB DETAIL** 

#### 9. Description of the Airtight Envelope

The first pressure test was done by Kevin Brennan on Dec 31, 2015 after the completion of the air-tight envelope. A second and final test were conducted by Nick Shaw, 475 Building Materials in 2017.



| Measurement         | 50 Pa-Pressure test<br>air change n <sub>50</sub> h <sup>-1</sup> |
|---------------------|-------------------------------------------------------------------|
| First test 12/31/15 | 1.08                                                              |
| 2nd test            | 1.0                                                               |
| Final test 12/6/17  | .99                                                               |
|                     |                                                                   |
|                     |                                                                   |

Concept airtightness Walls: liquid applied air tight membrane : Sto Emerald Coat Base plate: concrete Connection window: with bonding tapes: Pro-Clima Vana, Profil and Extoseal Encors Roof: Exterior grade plywood taped at all seams.

| Of/from                  | Foundation                                                                                | Wing<br>frame | Window, door<br>frame                                                   | Wall                                  | Roof                                     |
|--------------------------|-------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|---------------------------------------|------------------------------------------|
| Roof                     |                                                                                           |               |                                                                         | Bonding<br>tapes and<br>spray<br>foam | Bonding tapes<br>(butyl rubber<br>tapes) |
| Wall                     | Waterproof<br>membrane<br>joined to Sto<br>Emerald Coat<br>(on wall) with<br>bonding tape |               | Window frame<br>joined to wall<br>with bonding<br>tape (Tescon<br>Vana) | Sto<br>Emerald<br>Coat                |                                          |
| Window,<br>door<br>frame | Bonding tapes<br>and silicone<br>grouted under<br>threshold                               |               |                                                                         |                                       |                                          |

#### **10. Ventilation Units**

The project has 2 Zhender ventilation units. The Comfoair 200 serves the Unit 1 (cellar and 1st floor) and and Comfoair 550 serves Unit 2 (the 2nd, 3rd and 4th floors).



| Manufacturer Ventilation System    | Zehnder |
|------------------------------------|---------|
| Effective Heat Recovery Efficiency | 85%     |
| Power Consumption                  |         |
|                                    |         |

#### **11. Ventilation System**



**Ventilation supply** rooms are all main living /dining rooms and bedrooms. (blue: supply air ducts)

**Exhaust** air rooms are bathrooms, toilets and the kitchen. (red: exhaust air ducts).

**Transfer Air** is provided through a combination of custom transfer units, off-the-shelf transfer units (also used to transfer the conditioned air for heating and cooling), and door undercuts.

Ventilation System Unit 1

### 12. Heat/Cooling Supply

#### **Domestic Hot Water Supply**

The Domestic Hot water system serves the whole building it consists of :

- 1. Condensing gas boiler (roof) Manufacturer: Intellihot, Model: i250
- 2. Storage tank (roof) Manufacturer: Sanden, Model: SAN-83SSAQA
- 3. Circulation pump. (cellar) Manufacterer: Amtrol, Model:RP-25HP
- 4. Recirculation line

**Heat/Cooling supply** is from 2 Heat Pumps (Unit 1, Unit 2) with separate ducted air handlers serving 1 or 2 floors. Cellar and 1st floor: HP 1, Manufacturer: Mitsubishi CUHP 1: SUZ-KA15NA, AH 1: SEZ-KD15NA4

2nd Floor, 3rd floor, 4th floor: Manufacturer: Mitsubishi, HP 2: MXZ-3B30NA-1, AH 1: SEZ-KD15NA4, AH 2: SEZ-KD12NA4, AH 3: SEZ-KD09NA4



Outdoor Unit: SUZ-KA15NA

| FUNCTION                     | TYPE<br>– ID | MODEL NUMBER              | TOTAL<br>QTY | REMARKS                                                                      |
|------------------------------|--------------|---------------------------|--------------|------------------------------------------------------------------------------|
| HEAT PUMP                    | HP 1         | MITSUBISHI : SUZ-KA15NA   | 1            | (1) MOUNTED AT CELLAR LEVEL REAR<br>EXTERIOR WALL FOR CELLAR AND FIRST FLOOR |
| HEAT PUMP                    | HP 2         | MITSUBISHI : MXZ-3B30NA-1 | 1            | (1) UNIT AT ROOF FOR 2ND, 3RD AND 4TH FLRS                                   |
| INDOOR AIR HANDLER<br>DUCTED | AH 1         | MITSUBISHI : SEZ-KD15NA4  | 1            | CONCEALED IN DROPPED CLG W/ 40" x<br>31" ACCESS PANEL                        |
| INDOOR AIR HANDLER<br>       | AH 2         | MITSUBISHI : SEZ-KD12NA   | 1            | CONCEALED IN DROPPED CLG W/ 40" x<br>31" ACCESS PANEL                        |
| INDOOR AIR HANDLER<br>DUCTED | AH 3         | MITSUBISHI : SEZ-KDO9NA4  | 1            | CONCEALED IN DROPPED CLG W/ 31.5" ×<br>31.5" ACCESS PANEL                    |
| TRANSFER DUCT/GRILL          | Τ1           | TAMARACK                  | 10           | EITHER 12"x6" OR 14"x8", TBD                                                 |

#### **13. Building Costs**

Our construction costs were somewhat higher than typical costs because this project was a custom renovation of a Manhattan townhouse (c1910) which required substantial structural remediation.

The construction cost was approximately \$240.00 per square foot. The additional energy efficiency measures for Passive House EnerPHit construction came to approximately \$40.00 per square foot.

#### 14. Literature

[Cho et Al. 2017] Cho, In ; Shields, Timothy; D'Silva, Karena; Shea, Maureen; A Passive House mosaic for A New York City urban infill residential retrofit and extension, Conference Proceedings International Passive House Conference 2017: Passive House For All, Passive House Institute and University of Innsbruck, Darmstadt/Innsbruck, 2017, p193-4.

[Cho 2017] Cho, In ; Shields, Timothy; Retrofitting with a Mosaic of Assemblies, Passive House Buildings, Low Carbon Productions, 2017, p29-30.

<sup>[</sup>Cho 2018] Cho, In ; Shields, Timothy; Grammercy Park Enerphit Townhouse, New York, New York, From Small to Extra Large, Passive House Rising to New Heights, Low Carbon Productions, 2018, p 106-7.



This building was designed to meet the Passive House component energy retrofit criteria as defined by the Passive House Institute Darmstadt. Given appropriate on-site implementation, this building has the following characteristics:

| Building characteristics:                                                                                                 | Achieved                          | Required                     |                |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|----------------|
| Annual specific space heating demand                                                                                      | 21 kWh/(m²a)                      | ≤ 25 kWh/(m²a)               | r              |
| Annual specific primary energy demand <sup>2</sup><br>for heating, DHW, ventilation and all other electric appliances for | <b>123</b> kWh/(m <sup>z</sup> a) | ≤ 128 kWh/(m <sup>*</sup> a) | r              |
| Airtightness of building envelope n <sub>50</sub> as per test result                                                      | <b>1.0</b> h <sup>-1</sup>        | ≤ <b>1.0</b> h <sup>-1</sup> | v              |
| Mean value of individual building component the                                                                           | hermal protection :               |                              |                |
| Exterior insulation to ambient Thermal transmittance<br>(U-value)                                                         | 0.15 W/(m <sup>2</sup> K)         | ≤ 0.15 W/(m²K)               | - <sup>1</sup> |
| Exterior insulation to ground <sup>2</sup> Thermal transmittance<br>(U-value)                                             | <b>N/A</b> W/(m <sup>2</sup> K)   | ≤ 0.19 W/(m²K)               | _1             |
| Interior insulation to ambient Thermal transmittance<br>(U-value)                                                         | 0.25 W/(m <sup>2</sup> K)         | ≤ 0.35 W/(m²K)               | -1             |
| Interior insulation to ground Thermal transmittance (U-value)                                                             | 0.20 W/(m <sup>2</sup> K)         | ≤ <b>0.61</b> W/(m²K)        | _1             |
| Thermal bridges $\Delta_U$ Building envelope (window installation excluded)                                               | <b>N/A</b> W/(m²K)                | No limiting value            |                |
| Windows Thermal transmittance U <sub>w,installed</sub>                                                                    | 0.79 W/(m <sup>2</sup> K)         | ≤ 0.85 W/(m²K)               | <b>_</b> 1     |
| Exterior doors Thermal transmittance Uw, installed                                                                        | <b>N/A</b> W/(m <sup>2</sup> K)   | ≤ 0.80 W/(m²K)               | _1             |
| Ventilation unit Effective efficiency of heat recovery                                                                    | 85 %                              | ≥ 75 %                       | _1             |

<sup>1</sup>Limiting value is not relevant <sup>2</sup>Limiting value differs for each building <sup>3</sup>The requirements can not be met (exception applies)

| Certification criteria met?<br>Selection of the evaluation method |                                                                                                     | Space heating demand                      |   |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|---|
|                                                                   |                                                                                                     | Component quality                         | v |
| PHA<br>Passive House<br>A c a d e my<br>NY                        | <sup>ied:</sup><br><sup>33/2018</sup><br>Jericho Executive Plaza,<br>ite 300W Jericho,<br>11753 USA | certifier:<br>Luku Clout<br>Tomas O'Leary |   |