Project Documentation Gebäude-Dokumentation

Abstract | Zusammenfassung

Photos: Chuck Baker Photography

206 E 20th St, NY NY 10003

Data of building | Gebäudedaten

Year of construction Baujahr	$2013-2017$
U-value exterior (interior) insulation external wall U-Wert Außenwand	$0,15(0,5)$
U-value insulation interior underground U-Wert Kellerdecke	$\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$
U-value roof U-Wert Dach	0,20
U-value window U-Wert Fenster	$\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$
Heat recovery Wärmerückgewinnung	$\mathrm{W} /\left(\mathrm{m}^{2 \mathrm{~K})}\right.$

Space heating Heizwärmebedarf	$\mathbf{k W h}$
(ma)	

Brief Description

EnerPHit Retrofit: NYC urban infill residential retrofit and extension

A mosaic of different building assemblies (poured-in-place concrete, concrete masonry units, structural steel, light gauge metal, timber frame, rain screen and solid masonry) was used for structural remediation, to maximize performance and enlarge the existing building horizontally and vertically while maintaining a strong relationship with the front façade of the neighboring sister building. The addition includes balconies and terraces which provide access to the outdoors from almost every room.
This project was certified by the Passive House Academy (PHA).

Responsible project participants Verantwortliche Projektbeteiligte

Architect
Entwurfsverfasser

Implementation planning
Ausführungsplanung
Building systems
Haustechnik
Structural engineering
Baustatik

In Cho (ChoShields Studio)

http://www.choshields.com

Baukraft Engineering

Becker Engineering

Building physics
Bauphysik
Diesel Contracting of NY

Passive House project planning Passivhaus-Projektierung

Construction management
Bauleitung

Certifying body Zertifizierungsstelle

Passivhaus Institut Darmstadt www.passiv.de

Certification ID
 Zertifizierungs ID

5595
Project-ID (https://passivehousedatabase.org/index.php?lang=en\#d_5595)
Projekt-ID (https://passivehouse-
database.org/index.php?lang=de\#d_5595)

Certifier:Passive House Academy (PHA)

1. Ansichtsfotos

2. Innenfoto exemplarisch

Photos: Chuck Baker Photography

3. Schnittzeichnung

© ChoShields Studio

4. Grundrisse

5. Construction of Floor Slab

Wall to slab detail

A continuous 3" layer of R5/inch XPS was installed over the new slab throughout the cellar with an additional layer of insulation under the slab where grade beams were not required to reinforce the existing cellar walls. The existing stone walls were air-sealed with Sto Emerald Coat, and taped (with ProClima Vana) to the vapor barrier for continuous airsealing.

Enlarged slab detail

EnerPHit planning:

U-VALUES OF BUILDING ELEMENTS

Assembly no. Building assembly description								Interior insulation?	
	10 Floor							yes	
	Heat transfer	[$\left.\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}\right]$	interior $\mathrm{R}_{31}: 0.17$						
	Area section 1	$\lambda[\mathrm{W} /(\mathrm{mK})]$	Area section 2 (optional)	$\lambda[\mathrm{W} /(\mathrm{mK})]$	Area sectio	ional)	$\lambda[\mathrm{W} /(\mathrm{mK})]$	Thickness [mm]	
1.	Finish flooring	0.130						25	
2.	Roxul	0.036						76	
3.	Concrete	2.100						102	
4.	XPS	0.032						76	
5.	Gravel	5.000						102	
6.	Exist Concrete	3.000						102	
7.									
8.									
Percentage of sec. 1 100\%				Percentage of sec. 2	Percentage of sec. 3			Total	
				48.3 cm					
U-value supplement			$\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right)$		U-Value:		0.2	$\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	

6. Construction of Wall: Assembly no. 8, Metal Stud Wall

The vertical extension of the party wall required a 2 -hour fire-rating. The structural wall consists of light gauge metal stud walls encapsulated in gypsum sheathing (cavities filled with mineral wool). 4" continuous exterior insulation is attached using Fiberglas clips, which also support a rain screen. Additional mineral wool insulation was provided in the $11 / 2^{\prime \prime}$ service cavity at all exterior exposed walls. We submitted the thermal performance of this assembly in PSI Therm 3D as part of our certification.

6. Construction of Wall: Assembly no. 1, Timber Wall

Wall to ceiling /roof connection The air-sealing (shown green) is continuous from the structural wall wall, around the steel joist, and to the underside of the plywood, which was then air-sealed from above.

The front and rear facades of the building require a 1 -hour fire-rating which is achieved with fire-treated wood studs. The structural wall consists of wood stud walls encapsulated in gypsum sheathing (cavities filled with mineral wool). 4" continuous exterior insulation is attached using fiberglas clips, which also support a rain screen. Additional mineral wool insulation was provided in the $11 / 2^{\prime \prime}$ service cavity at all exterior exposed walls. We submitted the thermal performance of this assembly in PSI Therm as part of our certification.

6. Construction of Wall: Assembly no. 2, Front Cellar Wall

Interior insulation was added to the existing front cellar wall. Insulation was installed continuously and between wood battens which support the finished wall.

6. Construction of Wall, Assembly no. 3, Timber Wall Extra Insulation

This wall assembly is the same as assembly no 1 , the timber frame wall, except that since the juncture between the existing masonry and the new vertical extension occurred approximately 4^{\prime} above the finish floor, there was room to add extra insulation on the interior of the upper part of the wall. We submitted the thermal performance of this assembly in PSI Therm as part of our certification.

Photo left: step 1 flush air-sealed wall at transition between existing brick and new timber constuction. Photo right: step 2 interior (service) cavities upper part of 3rd floor wall- later filled with mineral wool insulation

6. Construction of Wall, Assembly no. 4, Front Brick Extra Insulation

On the front facade, we have used wood furring adjacent to the finish wall and filled the areas within and behind the furring with mineral wool insulation. This assembly has shallower existing brick which allows deeper insulation.

6. Construction of Wall, Assembly no. 5, Metal Beam in Timber Frame

All cavities in the rear addition steel moment frame were filled with mineral wool insulation. The wall was insulated on the interior with a $11 / 2^{\prime \prime}$ service cavity and on the exterior with 4" continuous mineral wool.

Photo left: wood framing for insulation of structural steel. Photo right: wall left open to show the cavities filled with mineral wool insulation.

nterior insulation?
no

Area section 1

1. Gypsum board
2.Roxul

3Gypsum board
4Roxul
5.Metal Beam
6.Roxul

7 Gypsum board
8.Roxul

6. Construction of Wall, Assembly no. 6, Front Existing Brick Wall

On the front facade, we have used wood furring adjacent to the finish wall and filled the areas within and behind the furring with mineral wool insulation.

6. Construction of Wall, Assembly No. 9, Party Wall

On the existing brick party walls, we added an additional wythe of 4" CMU block as part of the structural remediation. Although these walls were adjacent to another building, we insulated all 1 $1 / 2^{\prime \prime}$ service cavities 3^{\prime} in from exterior exposed walls.

Photo right: 2nd floor party wall insulation and wood battens extend inside 3' min. from exterior exposed front wall. The party wall is adjacent to the neighbor's conditioned space.

7. Construction of Roof, Assembly No. 7

8. Window and Window Installation

TYP HEAD AND SILL DETAIL

Window Installation

Description of the window (frame) construction, manufacturer
Make window
(frame; product name)

Munster Joinery, Eco Clad + Future Proof fixed and sash
U_{w}-value $=0.79 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$ Average

Frame U-value Uf
EcoClad: $0,72 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$, Future Proof: $0,66 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$

St Gobain 52 mm triple glazing VT 71\%;

Glass U-value Ug $\quad 0,60 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$
g-value of the
glazing

9. Description of the Airtight Envelope

The first pressure test was done by Kevin Brennan on Dec 31, 2015 after the completion of the air-tight envelope. A second and final test were conducted by Nick Shaw, 475 Building Materials in 2017.

Measurement	50 Pa-Pressure test air change n_{50} h^{-1}

First test 12/31/15
1.08

2nd test
1.0

Final test 12/6/17
.99

Concept airtightness
Walls: liquid applied air tight membrane : Sto Emerald Coat
Base plate: concrete
Connection window: with bonding tapes: Pro-Clima Vana, Profil and Extoseal Encors
Roof: Exterior grade plywood taped at all seams.

Of/from	Foundation	Wing frame	Window, door frame	Wall	Roof
Roof				Bonding tapes and spray foam	Bonding tapes (butyl rubber tapes)
	Waterproof membrane joined to Sto Emerald Coat (on wall) with bonding tape			Window frame joined to wall with bonding tape (Tescon Vana)	Sto Emerald Coat
Window, door frame	Bonding tapes and silicone grouted under threshold				

10. Ventilation Units

Manufacturer Ventilation System

Zehnder

Effective Heat Recovery Efficiency
 85\%

Power Consumption

11. Ventilation System

Ventilation System Unit 1

Ventilation supply rooms are all main living /dining rooms and bedrooms. (blue: supply air ducts)

Exhaust air rooms are bathrooms, toilets and the kitchen. (red: exhaust air ducts).

Transfer Air is provided through a combination of custom transfer units, off-the-shelf transfer units (also used to transfer the conditioned air for heating and cooling), and door undercuts.

12. Heat/Cooling Supply

Domestic Hot Water Supply

The Domestic Hot water system serves the whole building it consists of :

1. Condensing gas boiler (roof) Manufacturer: Intellihot, Model: i250
2. Storage tank (roof) Manufacturer: Sanden, Model: SAN-83SSAQA
3. Circulation pump. (cellar) Manufacterer: Amtrol, Model:RP-25HP
4. Recirculation line

Heat/Cooling supply is from 2 Heat Pumps (Unit 1, Unit 2) with separate ducted air handlers serving 1 or 2 floors. Cellar and 1st floor: HP 1, Manufacturer: Mitsubishi CUHP 1: SUZ-KA15NA, AH 1: SEZ-KD15NA4
2nd Floor, 3rd floor, 4th floor: Manufacturer: Mitsubishi, HP 2: MXZ-3B30NA-1, AH 1: SEZ-KD15NA4, AH 2:

SEZ-KD12NA4, AH 3: SEZ-KD09NA4

FUNCTION	$\begin{aligned} & \text { TYPE } \\ & -\quad \text { ID } \end{aligned}$	MODEL NUMBER	TOTAL QTY	REMARKS
HEAT PUMP	HP 1	MTSSUBISHI : SUZ-KA15NA	1	(1) MOUNTED AT CELLAR LEVEL REAR EXTERIOR WALL FOR CELLAR AND FIRST FLOOR
HEAT PUMP	HP 2	MTSUBISHI : MXZ-3B30NA-1	1	(1) UNIT AT ROOF FOR 2ND, 3RD AND 4TH FLRS
INDOOR AIR HANDLER -DUCTED	AH 1	MTSSUBISHI : SEZ-KD15NA4	1	CONCEALED IN DROPPED CLG W/ 40" x 31" ACCESS PANEL
INDOOR AIR HANDLER -DUCTED	AH 2	MTTSUBISHI : SEZ-KD12NA	1	CONCEALED IN DROPPED CLG W/ $40^{\prime \prime} \times$ $31^{\prime \prime}$ ACCESS PANEL
INDOOR AIR HANDLER -DUCTED	AH 3	MTSUBISHI : SEZ-KDO9NA4	1	CONCEALED IN DROPPED CLG W/ 31.5" \times 31.5" ACCESS PANEL
TRANSFER DUCT/GRIL	TT1	TAMARACK	10	EITHER 12 "x6" OR $14 * \times 8$ ", TBD

13. Building Costs

Our construction costs were somewhat higher than typical costs because this project was a custom renovation of a Manhattan townhouse (c1910) which required substantial structural remediation.
The construction cost was approximately $\$ 240.00$ per square foot. The additional energy efficiency measures for Passive House EnerPHit construction came to approximately $\$ 40.00$ per square foot.

14. Literature

[^0]
Certificate

30 Jericho Executive Plaza, Suite 300W Jericho, NY 11753 USA

Authorised by:
PHI

Certificate ID: 17771-17773_MosArt_EP_20180313_TOL

Passive House Academy hereby awards the EnerPHit certificate to the following building:

206 E 20 ${ }^{\text {th }}$ St., New York, NY 10003

Certified
Retrofit
Passive House Institute

Client:	Sudha \& Anil Sahai, New York
Architecture:	Architect: ChoShields Studio, New York, NY PH Consultant: In Cho (ChoShields Studio) Brooklynn NY
Building	
Services:	Diesel Contracting of NY, Astoria, NY Services: Cramer Silkworth, Baukraft Engineering, Brooklyn, NY

This building was designed to meet the Passive House component energy retrofit criteria as defined by the Passive House Institute Darmstadt. Given appropriate on-site implementation, this building has the following characteristics:

Building characteristics:	Achieved		Required	
Annual specific space heating demand	$21 \mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{a}\right)$	\leq	$25 \mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{a}\right)$	V
Annual specific primary energy demand ${ }^{2}$ for heating, DHW, ventilation and all other electric appliances for	$123 \mathrm{kWn/} /\left(\mathrm{m}^{2} \mathrm{a}\right)$		$128 \mathrm{kWh} /\left(\mathrm{m}^{\text {²a) }}\right.$)	\checkmark
Airtightness of building envelope n_{50} as per test result	$1.0 \mathrm{~h}^{-1}$		$1.0 \mathrm{~h}^{-1}$	\checkmark
Mean value of individual building component thermal protection :				
Exterior insulation to ambient Thermal transmittano: (U-value)	$0.15 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$		$0.15 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	-1
Exterior insulation to ground ${ }^{2}$ Thermal transmittance (U-value)	N/A W/(m²K)	\leq	$0.19 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	- 1
Interior insulation to ambient Thermal transmittance (U-value)	$0.25 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	\leq	$0.35 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	- 1
Interior insulation to ground Thermal transmittance (U-value)	$0.20 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	\leq	$0.61 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	- 1
Thermal bridges Δ_{U} Building envelope (window installation excluded)	N/A W/(m²K)		limiting valu	
Windows Thermal transmittance $\mathrm{U}_{\text {w, instaled }}$	$0.79 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	\leq	$0.85 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	- 1
Exterior doors Thermal transmittance $\mathrm{U}_{\text {w.instuled }}$	N/A W/(m²k)		$0.80 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$	- 1
Ventilation unit Effective efficiency of heat recovery	85 \%	\geq	75 \%	- 1

${ }^{1}$ Limiting value is not relevant ${ }^{2}$ Limiting value differs for each building ${ }^{3}$ The requirements can not be met (exception applies)

[^0]: [Cho 2018] Cho, In ; Shields, Timothy; Grammercy Park Enerphit Townhouse, New York, New York, From Small to Extra Large, Passive House Rising to New Heights, Low Carbon Productions,2018, p 106-7.
 [Cho et Al. 2017] Cho, In ; Shields, Timothy; D’Silva, Karena; Shea, Maureen; A Passive House mosaic for A New York City urban infill residential retrofit and extension, Conference Proceedings International Passive House Conference 2017: Passive House For All, Passive House Institute and University of Innsbruck, Darmstadt/Innsbruck, 2017, p193-4.
 [Cho 2017] Cho, In ; Shields, Timothy; Retrofitting with a Mosaic of Assemblies, Passive House Buildings, Low Carbon Productions, 2017, p29-30.

