
Project Documentation Gebäude-Dokumentation

Abstract | Zusammenfassung

2-Family EnerPHit Renovation – 564 9th Street – Brooklyn, New York

Data of building | Gebäudedaten

Year of construction Baujahr	2017	Space heating	17 kWh/(m²a)	
U-value external wall	0,217	Heizwärmebedarf		
U-Wert Außenwand	W/(m²K)			
U-value basement	0,227	Primary Energy Renewable (PER)	52	
U-Wert Kellerdecke	W/(m²K)	Erneuerbare Primärenergie (PER)	kWh/(m²a)	
U-value roof	0,098	Generation of renewable Energy	_	
U-Wert Dach	W/(m²K)	Erzeugung erneuerb. Energie	kWh/(m²a)	
U-value window	0,953	Non-renewable Primary Energy (PE)	112	
U-Wert Fenster	W/(m²K)	Nicht erneuerbare Primärenergie (PE)	kWh/(m²a)	
Heat recovery Wärmerückgewinnung	69 %	Pressurization test n_{50} Drucktest n_{50}	1,0 h ⁻¹	
Special features Besonderheiten	u			

564 9th Street – Brooklyn, NY

This row house, first built in the early 1900's and renovated to the EnerPHit standard in 2017, consists of a two floor main unit and an apartment on the ground level. Its location in a historic district meant that, with the exception of the roof, insulation had to be from the interior. Careful attention was paid to the detailing of the air barrier and insulation layers in order to ensure that this renovation would position the home for its next 100 years.

Windows on the front façade use a simulated double-hung window profile (fixed window over an operable window) in order to mimic the appearance of traditional sliding sash windows. Historic elements, such as the stained glass transom windows and wood brick moulding, were preserved or replicated on the front façade.

There are separate mechanical systems for the two dwellings. Both employ balanced ventilation with energy recovery and ducted split heat pump systems for heating and cooling. Domestic hot water production is also done with heat pump units.

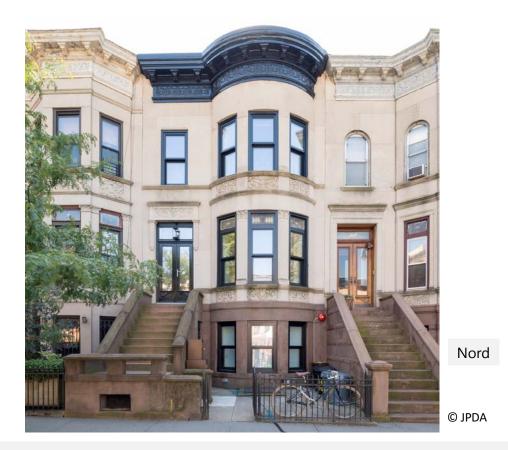
Kurzbeschreibung

Passivhaus Darmstadt Kranichstein

Responsible project participants Verantwortliche **Projektbeteiligte**

Architect	Jordan Parnass Digital Architecture
Entwurfsverfasser	www.jpda.net
Implementation planning	John Mitchell - bldgtyp
Ausführungsplanung	www.bldgtyp.com
Building systems	John Mitchell - bldgtyp
Haustechnik	www.bldgtyp.com
Structural engineering Baustatik	-
Building physics	John Mitchell - bldgtyp
Bauphysik	www.bldgtyp.com
Passive House project planning	John Mitchell - bldgtyp
Passivhaus-Projektierung	www.bldgtyp.com
Construction management	Supreme General Contracting
Bauleitung	www.supremegeneralcontracting.com
Certifying body Zertifizierungsstelle	
Passive House Academy www.passivehouseacademy.com	
Certification ID Zertifizierungs ID	
6181	Project-ID (<u>www.passivehouse-database.org</u>) Projekt-ID (<u>www.passivhausprojekte.de</u>)

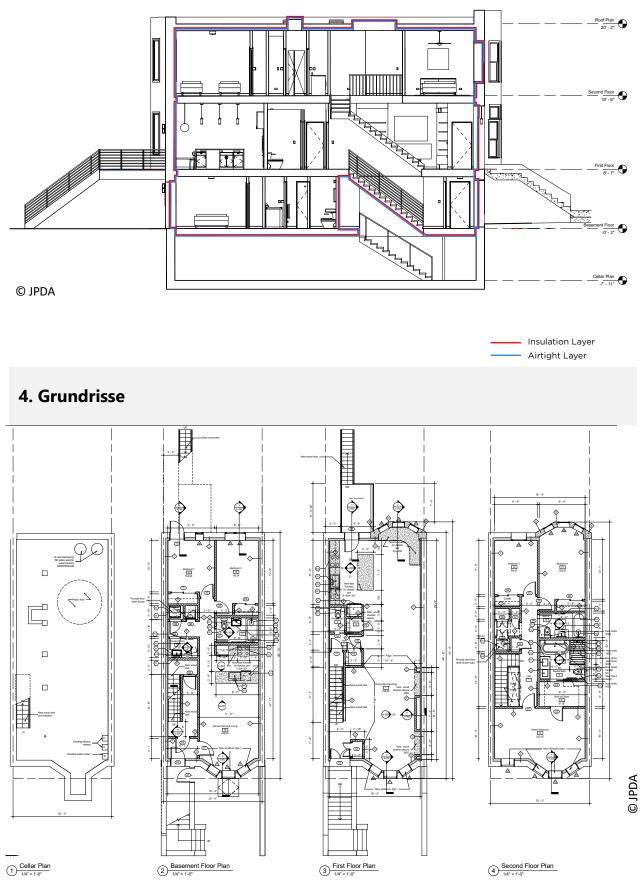
Author of project documentation Verfasser der Gebäude-Dokumentation


Passivhaus Ins	titut Darmstadt
www.passiv.de	9

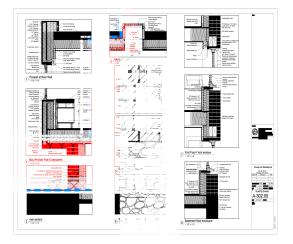
Date Datum Signature Unterschrift

October 22, 2019

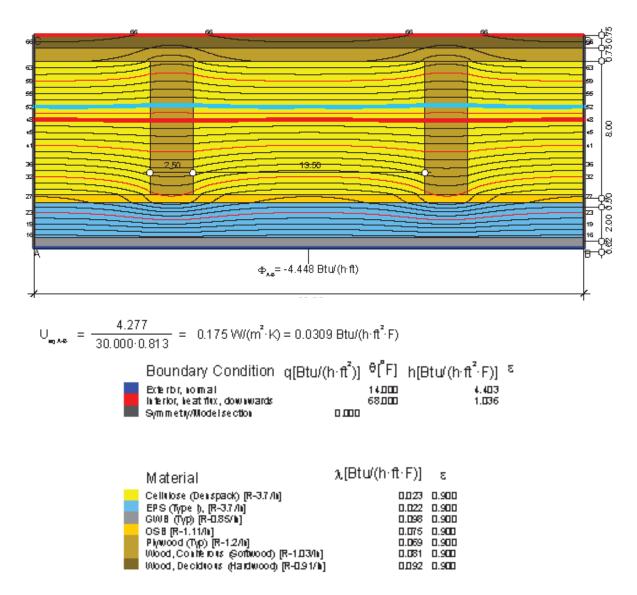
John D. Mi


1. Ansichtsfotos

2. Innenfoto exemplarisch

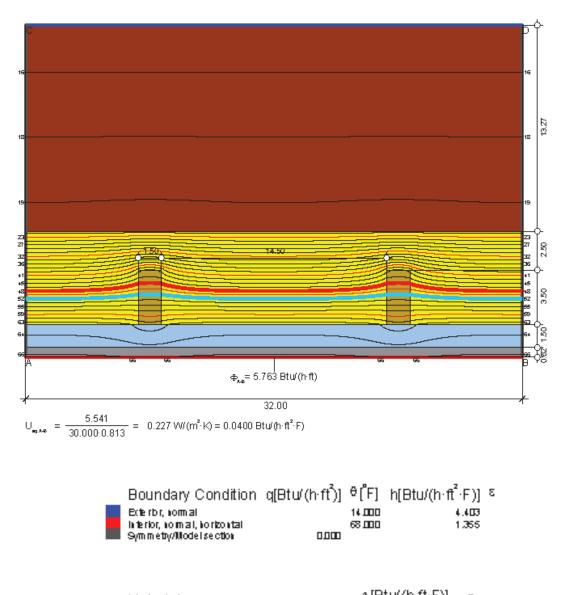


3. Schnittzeichnung



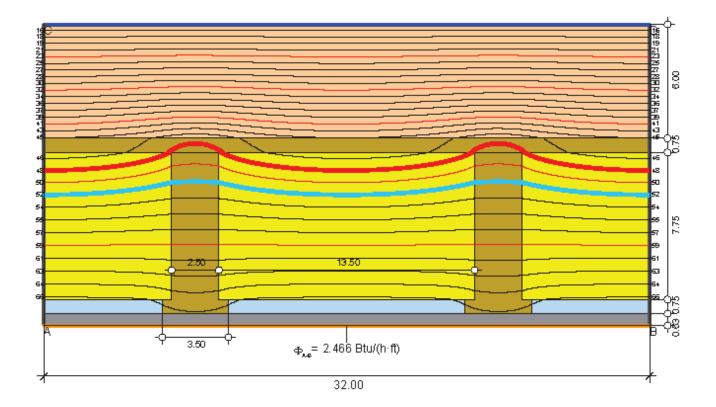
Page | Seite

5. Konstruktion der Bodenplatte



The ground floor is built over an uninsulated basement. Two inches of foil-faced EPS foam were installed under the existing floor joists. Joist bays were filled with dense packed cellulose insulation.

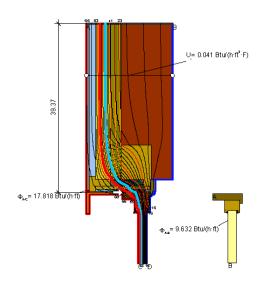
6. Konstruktion der Außenwände


A wood-framed wall was built to the interior of the existing masonry wall. A vapor variable ("smart") air barrier was installed on the interior of the framed wall. A service cavity was built to accommodate electrical and other services without disturbing the air barrier.

Material	λ[BtΨ(h·tt·F)]	З
Air layer, unue utilated, horizontal, thickness: 40 mm	0.128	
Brick (Common) [R-0.2/h]	0.416	0.900
Cellulose (Deuspack) [R-3.7/h]	0.023	0.900
GWB (Typ) (R-0.85/b)	0.098	0.900
Wood, Columbus (Softwood) (R-1 113/h)	0.081	0.900

7. Konstruktion des Daches

Six inches (150mm) exterior insulation (polyisocyanurate) was added to the existing roof structure before insulating between the joists with dense packed cellulose. The cellulose was held in place by the air barrier, a vapor variable "smart" air barrier/vapor retarder.

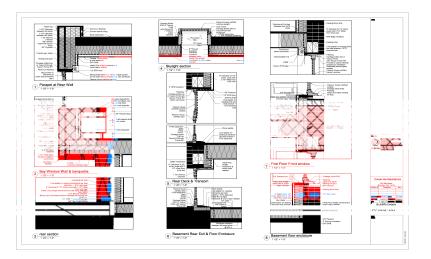


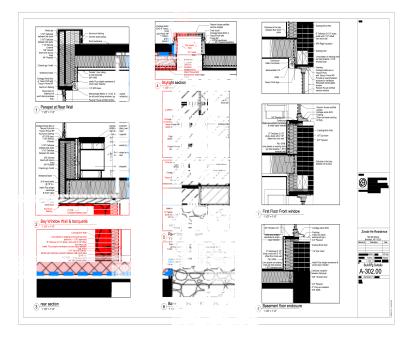
$$U_{m,ke} = \frac{2.371}{30.000 \cdot 0.813} = 0.0972 \text{ W/(m}^2 \text{ K}) = 0.0171 \text{ Btu/(h·ft}^2 \text{ F})$$

Boundary Condition	q[Btu/(h·ft²)]	0[°F]	$h[Btu/(h \cdot ft^2 \cdot F)]$	3
Exterior, to mai		14.000	4.403	
hterior, heatrix, spwards (1)		68 DD	1.761	
Symmetry/Modelsection	0.000			

Material	$\chi[{\sf B}t {\tt U}'({\rm h}{\rm \cdot}{\rm ft}{\rm \cdot}{\rm F})]$	З
A ir layer, unue ntilailed, upwards, thickness: 19 mm	0.069	
Cellulose (Denspack) [R-3.7 /h]	0.023	0.900
Firestone ISO 95+ GL Pot/iscovant rate Board (R-6.7/In) (1)	0.015	0.900
GWB (Typ) [R-0.85/h]	0.098	0.900
P1/wood (Typ) [R-1.2/h]	0.069	0.900
Wood, Colifié rolis (Sorfivood) (R-1.03/h)	0.081	0.900

8. Fenster und Fenster-Einbau

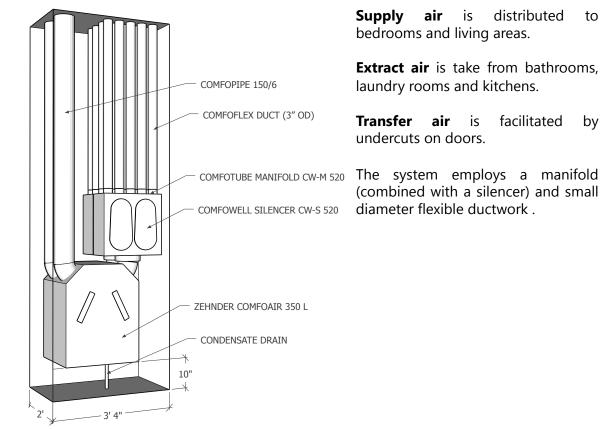

Beschreibung der Fenster (rahmen)-Konstruktion, Hersteller	Klearwall (Munster Joinery)
Fabrikat Fenster (rahmen; Produktname)	Front: Landmarks simulated double-hung wood windows Rear: PassiV AluP+ composite aluminum windows
Rahmen-U-Wert Uf	Front: 0,95 Rear: 0,85
Bauart der Verglasung	Krypton filled; 4 20 4 20 4
Glas-U-Wert Ug	0,50 W/(m²K)
g-Wert der Verglasung	0,49



9. Beschreibung der luftdichten Hülle

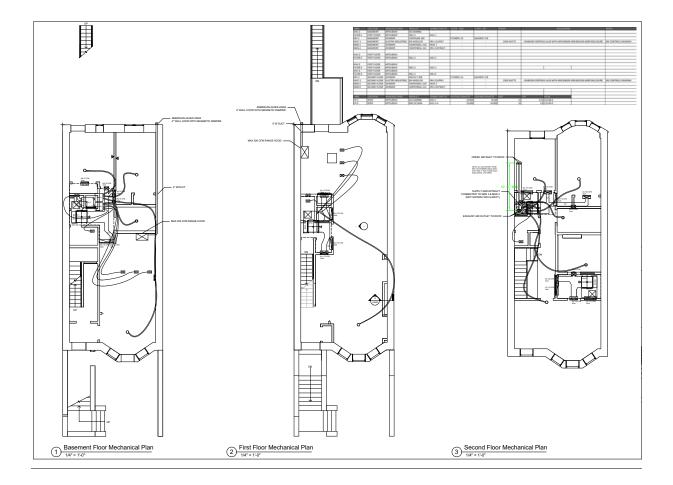
The airtightness of the building was accomplished in a number of different ways, given the unique challenges of a renovation using interior insulation. At the cellar, the seams of the foil facing of the EPS insulation were taped and connected to the exsisting masonry walls, which had been parged and prepared with a liquid air barrier material. At the insulated front and rear walls, the vapor variable air barrier/vapor retarder was connected to the prepared masonry walls, windows, etc. with tapes. The same air barrier materials were used at the roof.

Blower door testing was done once the air barrier was complete (before windows were installed), then again after windows and doors were installed. Final blower door testing was done in November of 2017. A result of 1.0 ach@50Pa was achieved.


ERVs were chosen for this project because of the dehumdification requirements during summers in New York. The ERVs will also help maintain comfortable humidity levels in winter. One ComfoAir 350 was selected for each dwelling according to the owners' wish to keep services separate.

Fabrikat Lüftungsanlage	Zehhnder
effektiver Wärmebereitstellungsgrad	77 % (64% humidity recovery)
Elektroeffizienz	0,31 Wh/m ³

11. Lüftungsplanung Kanalnetz



12. Wärmeversorgung

Heat pumps are used for heating, cooling, and domestic hot water production.

Because of the need for mechanical cooling and dehumidifcation in summer in New York, ducted heat pumps were selected to supply cooling and dehumidifcation in summer as well as heating in winter. The ducted indoor units require relatively little space and provide zoned controls for the owners.

15. PHPP-Ergebnisse

EnerPHit Verification							
:			Building	Zovak-He Res	sidence		
	and a second second			564 9th Stree			
			Postcode/City:		Brooklyn		
			Province/Country:			US-United State	es of America
				2-Family Res	idence	L	
			Climate data set:				
			Climate zone:	4: Warm-temp	perate Altitu	ude of location:	46 m
			Home owner / Client:	Jiani Jane He	and Skye Zoya		
				564 9th Stree			
			Postcode/City:	11215	Brooklyn		
			Province/Country:	New York		US-United State	es of America
Architecture:	IPDA		Mechanical engineer:				
			Street:				
Postcode/City:			Postcode/City:				
Province/Country:		ited States of America	Province/Country:		1		
Energy consultancy:			Certification:	Passive Hous	se Academy		
	231 Park Place #22		Street:				
Postcode/City:			Postcode/City: Province/Country:		1		
Province/Country:		ited States of America			······		
Year of construction:	2017		terior temperature winter [°C]:	20.0	Interior temp.		25.0
No. of dwelling units:	2		ns (IHG) heating case [W/m ²]:	2.6	-	case [W/m ²]:	2.6
No. of occupants:	4.9	Specific	capacity [Wh/K per m ² TFA]:	132	Mecha	inical cooling:	x
Cassifia huilding sharestaria	tics with reference to the treated floor are	_					
Specific building characteris	tics with reference to the treated noor are	a			Alternative		
	Treated floor area m ²	206.0		Criteria	criteria		Fullfilled? ²
Space heating	Heating demand kWh/	(m²a) 17.07	≤	20	-		
	Heating load W/m ²	17.66	5	_	_		yes
	ricating load thin		-				
Space cooling	Cooling & dehum. demand kWh/	(m²a) 12.14	≤	18	18		yes
	Cooling load W/m ²	14.62	≤	-	10		yes
Fre	equency of overheating (> 25 °C) %	-	≤	-			-
	essively high humidity (> 12 g/kg) %	4	5	10			VOC
r requericy of exce	essively high humidity (> 12 g/kg) /6	4	3	10			yes
Airtightness	Pressurization test result n ₅₀ 1/h	1.0	≤	1.0			yes
Moisture protection			3				
-	· · · · · · · · · · · · · · · · · · ·	[I .	0.05		1	
	t temperature factor $f_{Rsi=0.25\ m^2 K/W}$ -	-	≥	0.65			-
Thermal Comfort	All requirements fulfilled? -			yes			yes
	U-value W/(m	1²K)	≤	0.95			
	U-value W/(m	1²K)	≤	1.13			
	U-value W/(m	,	- <	1.24			
			-				
	U-value W/(m	rk)	≤	0.52			
Non-renewable Primary E	nergy (PE) PE demand kWh/	(m²a) 112	≤	-			-
					,		
	PER demand kWh/	(m²a) 52	≤	63	-		
Primary Energy Renewable (PER)	Generation of renewable						yes
Kellewable (FER)	energy (in relation to pro-jected kWh/ building footprint area)	(m*a) -	≥	-	-		
	building lootprint area)						
					² E	mpty field: Data m	issing; '-': No requirement
Loopfirm that the values of	on homin have been determined for	ving the PHPP method-l	v and based on the above of	rietie values -f			
the building. The PHPP cal	ven herein have been determined follow culations are attached to this verificatio	n.	y and based on the characte	nsuc values of	EnerPh	Hit Classic?	yes
Task:	Firs			Sumame:			Signature:
1-Designer	John		Mitchell				
		Issued on:	Desalders	City:	1		
			Brooklyn				

The PHPP was used throughout the design process to test strategies and refine the design.